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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a o5
is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only ass and a4z, NOt a1o (See equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):
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Here the primes signify that the a's and b’'s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the 2's? The last « (x4 in this example) is already
isolated, namely

xq =b)/aly, (2.2.2)
With the last = known we can move to the penultimate z,

1
z3 = ——[by — z4aby] (2.2.3)

ass

and then proceed with the x before that one. The typical step is

1 N
Ti=— b — Z ;T (2.2.4)
& j=i+1
The procedure defined by eguation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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34 Chapter 2. Solution of Linear Algebraic Equations

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N2 and N2 M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only %N 3 times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and %N 2M times, respectively.
Each backsubstitution of aright-hand side is %N 2 executions of a similar loop (one
multiplication plus one subtraction). For M <« N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glancerequire %N 3 (matrix
reduction) +21N? (right-hand side manipulations) +2 N3 (IV backsubstitutions)
= %N 3 loop executions, which is more than the N 3 for Gauss-Jordan. However, the
unit vectors are quite specia in containing all zeros except for one element. If this
is taken into account, the right-side manipulations can be reduced to only %N 3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian elimination and Gauss-Jordan elimination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.
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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (2.3.1)

where L islower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagona and above). For the case of

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



